If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4X^2+43X=30
We move all terms to the left:
4X^2+43X-(30)=0
a = 4; b = 43; c = -30;
Δ = b2-4ac
Δ = 432-4·4·(-30)
Δ = 2329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-\sqrt{2329}}{2*4}=\frac{-43-\sqrt{2329}}{8} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+\sqrt{2329}}{2*4}=\frac{-43+\sqrt{2329}}{8} $
| 1,164=24.25x | | (x^2)+12x+17=4x+1 | | 5x+7/2=3/2 | | (x+53)+x=553 | | 19=2u+5 | | -5(t-5)+7t=6t-5 | | 26=2+4v | | 5y=-2+15 | | 2(x+9)=2x-9 | | 28-2x=11x+262 | | x+(x+5.8)+(x+5.8)/2+((x+5.8)/2)*3=246.2 | | -1x+12=-18 | | 4x+3=4(x-1) | | 17=-(3x+7) | | -6+4y=-26 | | 100=0.08x3/4 | | -1x-12=-18 | | 5h=5.1 | | 0.75t-0.83=0.66 | | .5b=2b-2 | | 39=y/2+9 | | 4x°+8x°=180° | | 5(t-2)-8t=-34 | | 11x+6−2x=−5x−18+x | | X+.18x=170 | | -4e9=19 | | -9-8(1+4h)=17 | | x9+7=−4 | | .2(15t-5)=4(4t+1) | | 116=8n+4 | | x/9+7=−4 | | -12=4x-4 |